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Abstract
We construct N-soliton solution for the non-autonomous discrete-time Toda
lattice equation, which is a generalization of the discrete-time Toda equation
such that the lattice interval with respect to time is an arbitrary function in time.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

In this paper, we consider the nonlinear partial difference equation given by

At+1
n + Bt+1

n + λt+1 = At
n + Bt

n+1 + λt ,

At+1
n−1B

t+1
n = At

nB
t
n,

n ∈ Z, (1)

where n and t are the independent variables, At
n and Bt

n are the dependent variables and λt

is an arbitrary function in t, respectively. In the physical context, the variables n, t, At
n and

Bt
n correspond to the lattice site, the discrete time and the fields, respectively. Equation (1) is

equivalent to the following equation:

J t+1
n − δt+1V

t+1
n−1 = J t

n − δtV
t
n ,

V t+1
n

(
1 − δt+1J

t+1
n

) = V t
n

(
1 − δtJ

t
n+1

)
,

n ∈ Z, (2)

where the variables are related as

At
n = −λt + J t

n, Bt
n = −λ−1

t V t
n−1, δt = λ−1

t , (3)

respectively. When λt or δt is a constant, equation (1) or (2) reduces to the discrete-time Toda
equation proposed by Hirota [2, 4]. Moreover, equation (2) yields the celebrated Toda lattice
equation

dJn

dt
= Vn−1 − Vn,

dVn

dt
= Vn(Jn − Jn+1),

n ∈ Z, (4)

in the continuous limit δt = δ → 0.
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Equation (1) was proposed by Spiridonov and Zhedanov in [17], where the equation is
called just ‘the discrete-time Toda lattice’. On the other hand, equation (2) was proposed
by Hirota [5], and called ‘the random-time Toda equation’. However, it appears that those
names are not appropriate for equations (1) and (2), since the former name usually refers to
the case where λt and δt are constants, and the latter is somewhat misleading. In this paper,
we call equations (1) and (2) ‘the non-autonomous discrete-time Toda lattice equation’. The
non-autonomous discrete-time Toda lattice equation is written in the Lax form

Lt+1Rt+1 + λt+1 = RtLt + λt , (5)

where Lt and Rt are difference operators defined by

Lt = At
n + e−∂n , Rt = Bt

n+1 e∂n + 1, (6)

respectively. The Lax equation (5) is the compatibility condition of the spectral problem
equation

�t+1
n = Rt�

t
n = Bt

n+1�
t
n+1 + �t

n, (x − λt )�
t
n = Lt�

t+1
n = At

n�
t+1
n + �t+1

n−1, (7)

where x is a spectral parameter and �t
n is a wavefunction.

An important feature of soliton equations, including the Toda lattice and the discrete-time
Toda equations, is that they admit a wide class of exact solutions, such as soliton solutions.
Moreover, these solutions are expressed by determinants or Pfaffians [6], which are regarded
as a characteristic property of integrable systems according to the Sato theory [11]. It is known
that the discrete-time Toda equation (when λt is a constant) admits two kinds of determinant
solutions. One is the Hankel-type determinant solution, in which the lattice site n appears as
the determinant size [3, 7]. Another one is the Casorati determinant solution which describes
soliton-type solutions [4]. In this solution, the determinant size corresponds to the number of
solitons. The Hankel-type determinant solution for the non-autonomous discrete-time Toda
lattice equation was constructed in [12, 13]. The purpose of this paper is to present explicit
N-soliton solutions for the non-autonomous discrete-time Toda lattice equation in the form of
the Casorati determinant.

2. Soliton solution for the non-autonomous discrete-time Toda lattice equation

For any N ∈ Z>0, we first define N × N Casorati determinants τ t
n and σ t

n as

τ t
n =

∣∣∣∣∣∣∣∣∣∣∣

ϕt
1(n) ϕt

1(n + 1) · · · ϕt
1(n + N − 1)

ϕt
2(n) ϕt

2(n + 1) · · · ϕt
2(n + N − 1)

...
...

...

ϕt
N (n) ϕt

N(n + 1) · · · ϕt
N(n + N − 1)

∣∣∣∣∣∣∣∣∣∣∣
, (8)

σ t
n =

∣∣∣∣∣∣∣∣∣∣∣

ψt
1(n) ψt

1(n + 1) · · · ψt
1(n + N − 1)

ψt
2(n) ψt

2(n + 1) · · · ψt
2(n + N − 1)

...
...

...

ψt
N(n) ψt

N(n + 1) · · · ψt
N(n + N − 1)

∣∣∣∣∣∣∣∣∣∣∣
, (9)
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where the entries ϕt
i (n) and ψt

i (n) (i = 1, . . . , N) satisfy the linear relations

ϕt+1
i (n) = ϕt

i (n) − µtϕ
t
i (n + 1), (10)

ψt
i (n) = ϕt−1

i (n) − µtϕ
t−1
i (n + 1), (11)

P t
i ϕ

t−1
i (n) = ψt

i (n) − µtψ
t
i (n − 1), (12)

with µt being an arbitrary function in t, and P t
i given by

P t
i = (1 − piµt )

(
1 − p−1

i µt

)
, i = 1, . . . , N. (13)

For N = 0, we put τ t
n = σ t

n = 1. Then, the main result of this paper is given as follows:

Theorem 1. For τ t
n defined above, the functions

At
n = −µ−1

t

τ t
nτ

t+1
n+1

τ t+1
n τ t

n+1

, Bt
n = −µt

τ t+1
n−1τ

t
n+1

τ t
nτ

t+1
n

, λt = µt + µ−1
t (14)

satisfy the non-autonomous discrete-time Toda lattice equation (1).

As was pointed out in [12, 13], the auxiliary τ function σ t
n plays an essential role although it

does not appear in the final result.

Proposition 2. τ t
n and σ t

n satisfy the following bilinear difference equations:

τ t−1
n τ t+1

n − τ t
nσ

t
n = µt−1µt

(
τ t+1
n−1τ

t−1
n+1 − τ t

nσ
t
n

)
, (15)

µtσ
t
nτ

t
n+1 − µt−1τ

t
nσ

t
n+1 = (µt − µt−1)τ

t+1
n τ t−1

n+1 . (16)

Theorem 1 is a direct consequence of proposition 2. Actually, multiplying equation (16) by
1 − (µtµt−1)

−1, we have(
µt − µ−1

t−1

)
σ t

nτ
t
n+1 − (

µt−1 − µ−1
t

)
τ t
nσ

t
n+1 = (λt − λt−1)τ

t+1
n τ t−1

n+1 . (17)

Multiplying equation (17) by τ t
nτ

t
n+1 and using equation (15), we have(

τ t
n+1

)2(
µtτ

t+1
n−1τ

t−1
n+1 − µ−1

t−1τ
t−1
n τ t+1

n

) − (
τ t
n

)2(
µt−1τ

t+1
n−1τ

t−1
n+1 − µ−1

t τ t−1
n τ t+1

n

)
= (λt − λt−1)τ

t
nτ

t+1
n τ t−1

n+1 τ t
n+1. (18)

Dividing equation (18) by τ t
nτ

t+1
n τ t−1

n+1 τ t
n+1, we obtain the first equation of equation (1). The

second equation is an identity under the variable transformation (14).

Remark 3.

(i) If we choose the functions ϕt
i (n) and ψt

i (n) as exponential-type functions

ϕt
i (n) = αip

n
i

t−1∏
j=t0

(1 − piµj ) + βip
−n
i

t−1∏
j=t0

(
1 − p−1

i µj

)
, (19)

ψt
i (n) = αip

n
i (1 − piµt )

t−2∏
j=t0

(1 − piµj ) + βip
−n
i

(
1 − p−1

i µt

) t−2∏
j=t0

(
1 − p−1

i µj

)
, (20)

respectively, where αi, βi and pi (i = 1, . . . , N) are parameters, we have the N-soliton
solution. As is shown in [6, 14], τ functions for soliton solutions are expressed as
Casorati determinants whose entries are given by exponential-type functions.

(ii) In the case where µt is a constant, the bilinear equations (15) and (16) reduce to

τ t−1
n τ t+1

n − (
τ t
n

)2 = µ2
[
τ t+1
n−1τ

t−1
n+1 − (

τ t
n

)2]
, (21)

which is the bilinear equation of the discrete-time Toda equation [2]. Indeed, the N-soliton
solution also reduces to that for the discrete-time Toda equation.
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(iii) The functions ϕt
i (n) (i = 1, . . . , N) satisfy the spectral problem equation

ϕt+1
i (n) = −µtϕ

t
i (n + 1) + ϕt

i (n),

(xi − λt )ϕ
t
i (n) = −µ−1

t ϕt+1
i (n) + ϕt+1

i (n − 1), xi = pi + p−1
i .

(22)

Equation (22) is the spectral problem equation (7) with At
n = −µ−1

t , Bt
n = −µt and

λt = µt + µ−1
t , which is the simplest solution for the non-autonomous discrete-time Toda

lattice equation (1).

3. Proof of proposition 2

In this section we prove proposition 2 by using the technique developed in [14, 15]. The
bilinear equations (15) and (16) reduce to the Plücker relations, which are quadratic identities
among the determinants whose columns are properly shifted. Therefore, we first prepare such
difference formulae that express shifted determinants in terms of τ t

n or σ t
n. For simplicity, we

introduce the notation

τ t
n = |0t 1t · · · (N − 1)t |, σ t

n = |0̂t 1̂t · · · ̂(N − 1)t |, (23)

where the symbols kt and k̂t are column vectors given by

kt =




ϕt
1(n + k)

ϕt
2(n + k)

...

ϕt
N (n + k)


 , k̂t =




ψt
1(n + k)

ψt
2(n + k)

...

ψt
N(n + k)


 , (24)

respectively.

Lemma 4. The following formulae hold:

τ t
n = |0t 1t · · · (N − 2)t (N − 1)t |, (25)

τ t−1
n = |0t 1t · · · (N − 2)t (N − 1)t−1|, (26)

µt−1τ
t−1
n = |0t 1t · · · (N − 2)t (N − 2)t−1|, (27)(

N∏
i=1

P t
i

)−1

τ t+1
n = |0̃t+1 1t · · · (N − 2)t (N − 1)t |, (28)

(
N∏

i=1

P t
i

)−1

µtτ
t+1
n = |1̃t+1 1t · · · (N − 2)t (N − 1)t |, (29)

(1 − µt−1µt)

(
N∏

i=1

P t
i

)−1

σ t
n = |0̃t+1 1t · · · (N − 2)t (N − 1)t−1|, (30)

where the symbol k̃t is the column vector given by

k̃t =




(
P t

1

)−1
ϕt

1(n + k)(
P t

2

)−1
ϕt

2(n + k)

...(
P t

N

)−1
ϕt

N(n + k)




. (31)
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Proof of lemma 4. We first note that ϕt
i (n) and ψt

i (n) also satisfy the linear relations

ϕt+1
i (n) = ψt

i (n) − µt−1ψ
t
i (n + 1), (32)

P t
i ϕ

t
i (n) = ϕt+1

i (n) − µtϕ
t+1
i (n − 1), (33)

which follow from equations (10)–(12). Equation (25) is nothing but the definition.
Equation (26) is derived as follows: subtracting (j + 1) th column multiplied by µt−1 from
j th column of τ t−1

n for j = 0, 1, . . . , N − 1, and using equation (10), we have

τ t−1
n = |0t−1 1t−1 · · · (N − 1)t−1|

= |0t−1 − µt−1 × 1t−1 1t−1 · · · (N − 1)t−1|
= |0t 1t−1 · · · (N − 1)t−1|
= · · · = |0t · · · (N − 2)t (N − 1)t−1|,

which is equation (26). Moreover, multiplying by µt−1 the Nth column of the right-hand side
of equation (26) and using equation (10), we have

µt−1τ
t−1
n = |1t · · · (N − 2)t µt−1 × (N − 1)t−1|

= |1t · · · (N − 2)t (N − 2)t + µt−1 × (N − 1)t−1|
= |1t · · · (N − 2)t (N − 2)t−1|,

which is nothing but equation (27). Equations (28) and (29) can be proved in a similar
manner by using equation (33). Equation (30) can be proved as follows: first note that σ t

n is
rewritten as

σ t
n = |0t+1 · · · (N − 1)t+1 ̂(N − 1)t |, (34)

which is shown in a similar manner by using equation (32). We also note that ϕt
i (n) and

ψt
i (n) satisfy the relation

(1 − µtµt−1)ψ
t
i (n) = P t

i ϕ
t−1
i (n) + µtϕ

t+1
i (n − 1), (35)

which can be derived by eliminating ϕt
i (n − 1) from equation (32) with n being replaced by

n − 1 and equation (12). Then, multiplying by (1 − µtµt−1) the Nth column of the right-hand
side of equation (34) and using equation (35), we obtain

(1 − µtµt−1)σ
t
n

= |0t+1 · · · (N − 2)t+1 (1 − µtµt−1) × ̂(N − 1)t |

=

∣∣∣∣∣∣∣∣∣∣∣

ϕt+1
1 (n) · · · ϕt+1

1 (n + N − 2) P t
1ϕ

t−1
1 (n + N − 1)

ϕt+1
2 (n) · · · ϕt+1

2 (n + N − 2) P t
2ϕ

t−1
2 (n + N − 1)

...
...

...

ϕt+1
N (n) · · · ϕt+1

N (n + N − 2) P t
Nϕt−1

N (n + N − 1)

∣∣∣∣∣∣∣∣∣∣∣

= · · · =

∣∣∣∣∣∣∣∣∣∣∣

ϕt+1
1 (n) P t

1ϕ
t
1(n + 1) · · · P t

1ϕ
t
1(n + N − 2) P t

1ϕ
t−1
1 (n + N − 1)

ϕt+1
2 (n) P t

2ϕ
t
2(n + 1) · · · P t

2ϕ
t
1(n + N − 2) P t

2ϕ
t−1
2 (n + N − 1)

...
... · · · ...

...

ϕt+1
N (n) P t

Nϕt
N(n + 1) · · · P t

Nϕt
1(n + N − 2) P t

Nϕt−1
N (n + N − 1)

∣∣∣∣∣∣∣∣∣∣∣
=

N∏
i=1

P t
i |0̃t+1 1t · · · (N − 2)t (N − 1)t−1|,

which is equation (30). This completes the proof of lemma 4. �
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Now consider the following identity of the 2N × 2N determinant:∣∣∣∣0̃t+1 0t · · · (N − 2)t Ø (N − 1)t (N − 1)t−1

0̃t+1 Ø 1t · · · (N − 2)t (N − 1)t (N − 1)t−1

∣∣∣∣ = 0. (36)

Applying the Laplace expansion to the left-hand side of equation (36) and using lemma 4, we
obtain

0 = |0̃t+1 0t 1t · · · (N − 2)t | × |1t · · · (N − 2)t (N − 1)t (N − 1)t−1|
+ |0t 1t · · · (N − 2)t (N − 1)t | × |0̃t+1 1t · · · (N − 2)t (N − 1)t−1|
− |0t 1t · · · (N − 2)t (N − 1)t−1| × |0̃t+1 1t · · · (N − 2)t (N − 1)t |

= µt

(
N∏
i

P t
i

)
τ t+1
n−1 × µtτ

t−1
n+1 + τ t

n × (1 − µtµt−1)

×
(

N∏
i

P t
i

)
σ t

n − τ t−1
n ×

(
N∏
i

P t
i

)
τ t+1
n ,

which is the bilinear equation (15).
The bilinear equation (16) can be proved by a similar technique. We prepare the following

difference formulae.

Lemma 5. The following formulae hold:

τ t
n = |0t+1 1t+1 · · · (N − 2)t+1 (N − 1)t |, (37)

µtτ
t
n+1 = |1t+1 2t+1 · · · (N − 1)t+1 (N − 1)t |, (38)

σ t
n = |0t+1 1t+1 · · · (N − 2)t+1 ̂(N − 1)t |, (39)

µt−1σ
t
n+1 = |1t+1 · · · (N − 2)t+1 (N − 1)t+1 ̂(N − 1)t |, (40)

(µt−1 − µt)τ
t−1
n+1 = |1t+1 · · · (N − 2)t+1 (N − 1)t ̂(N − 1)t |. (41)

Proof of lemma 5. Equations (37) and (38) are equivalent to equations (26) and (27),
respectively. Equation (39) is the same as equation (34). Equation (40) can be derived
by using equation (32) after multiplying by µt−1 the Nth column of the right-hand side of
equation (37). In order to prove equation (41), we note the following relation between ϕt

i (n)

and ψt
i (n):

(µt−1 − µt)ϕ
t−1
i (n) = ψt

i (n − 1) − ϕt
i (n − 1), (42)

which can be obtained by eliminating ϕt−1
i (n) from equation (10) with t being replaced

by t − 1 and equation (11). Multiplying by µt−1 − µt the Nth column of τ t−1
n+1 and using

equation (42), we obtain equation (41). This completes the proof of lemma 5. �

The bilinear equation (16) is derived by applying the Laplace expansion to the left-hand
side of the following identity:∣∣∣∣∣0t+1 · · · (N − 2)t+1 Ø (N − 1)t+1 (N − 1)t ̂(N − 1)t

Ø 1t+1 · · · (N − 2)t+1 (N − 1)t+1 (N − 1)t ̂(N − 1)t

∣∣∣∣∣ = 0,

and using lemma 5. This completes the proof of proposition 2 and thus theorem 1.
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4. Concluding remarks

In this paper we have presented the N-soliton solution for the non-autonomous discrete-time
Toda lattice equation (1), which can be regarded as a generalization of the discrete-time Toda
equation such that the lattice interval with respect to time is an arbitrary function in time.

Discrete soliton equations commonly arise as Bäcklund- or Darboux-type transformations
for corresponding continuous soliton equations. In this context, a number of iterations
of a Bäcklund transformation can be regarded as the discrete independent variable. The
Bäcklund transformation admits one parameter, playing a role of the lattice interval, which
can be an arbitrary function in the corresponding independent variable. In this sense, discrete
soliton equations can be naturally extended to be non-autonomous (see, for example, [1, 16]).
Also, such non-autonomous generalization can be mapped to autonomous case (the lattice
intervals are constants) by certain gauge transformation [19]. However, it should be noted that
such transformation does not map the soliton solutions to soliton solutions directly. It was
recognized in [8, 9] that the discrete two-dimensional Toda lattice equation (or equivalently,
the discrete KP equation) admits non-autonomous generalization keeping the determinantal
structure of exact solutions.

It is known that various discrete soliton equations are derived from the discrete KP equation
and its Bäcklund transformations. Therefore, it is expected that solutions of non-autonomous
discrete soliton equations are discussed from this point of view. For example, the solutions
of the non-autonomous discrete-time relativistic Toda equation have been constructed in this
manner in [10].

However, direct reduction process from the non-autonomous discrete KP equation might
not be sufficient. As we have shown in this paper, in the case of equation (2), clever
introduction of an auxiliary τ function (σ t

n in this paper) is critical, which does not appear
in the autonomous or continuous cases. Careful investigation of this machinery may lead to
various generalizations of discrete soliton equations and their solutions. This problem will be
discussed in forthcoming papers.
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